

Virtual Reality & Physically-Based Simulation **Principles of Input Devices**

G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de

The "Bill Buxton Test"

- Draw a computer within 15(!) seconds
- Ca. 80% of all people draw something like this
 - Monitor
 - Keyboard
 - Mouse
- Remarkable:
 - No "computer" in the drawing!
 - Take-away message: users don't perceive the system as a computer, they just see a device on its surface, and they just perceive some kind of I/O behavior \rightarrow the interaction with the device is critical for success/failure

The Promise of Virtual Reality

Problem of conventional input devices: bandwidth

- Multimodal input = input using different modalities, e.g., tracking and voice
 - Post-WIMP interfaces ("WIMP" = windows, icons, menus, pointers)
 - Challenge: make the devices non-intrusive
- Ultimate goal: "natural" user interaction (like in real life (?))

Bremen Ŵ Extreme Examples of "Intrusive" I/O Devices

Bremen **Degrees of Freedom**

- Definition Degrees of Freedom (DOFs) := number of free variables describing the state of a system
- Quiz about DOFs:
 - How many DOFs does our wrist joint have?
 - The head?
 - One human arm?

How Many DoF's Does Each Thing Have?

https://www.menti.com/zkg58wx3dc

Please don't spoil by "look-ahead"!

• A ship's pose

- The Stewart motion platform
 - How many independent DOFs?
 - How many dependent DOFs?

DOF's in the main kinematic joints/pairs

Cylindrical joint

Prismatic joint (slider)

Revolute joint

Spherical joint

• How many independent DOFs in one robot arm of this surgery robot?

- The screw joint:
 - Joint with coupled rotational and translational degrees of freedom
 - One independent DOF, and one dependent DOF

The internal DOF's of a water molecule:

Classical Input Devices

- Mouse:
 - Precise, inexpensive
 - Only 2D, input of orientations is cumbersome
- Drawing tablet:
 - Precise, very well suited for ... drawing
 - 2D, input of orientations is virtually impossible
- Light pen (early version of touch/tablet screen)

Bremen The Virtual Trackball

- Interaction task: rotate an object around an arbitrary axis
- Real trackballs can provide 3 DOF rotations
- Interaction device: classic 2D mouse
- Problem: how to enter orientations with a mouse?

The Algorithm

- Approach:
 - Conceptually, put a (virtual) sphere around the object
 - The sphere can rotate only abouts ist center
 - With the mouse, you drag points on the surface of the sphere
- Given: 2D points start = (x_1, y_1) , end = (x_2, y_2)
- Wanted: rotation axis **r**
- Computation:
 - 1. Derive 3D points

$$\mathbf{p}_i = (x_i, y_i, z_i)$$
 $z_i = \sqrt{1 - (x_i^2 + y_i^2)}$

2. Rotation axis

 $\mathbf{r} = \mathbf{p}_1 \times \mathbf{p}_2$

Conceptual path of the dragged point on the sphere = Segment of a great circle

- If $\mathbf{p}_1 = \text{first mouse click}, \mathbf{p}_2 = \text{current mouse pos.} \rightarrow \text{not intuitive}$
- If \mathbf{p}_1 = mouse pos. as of last frame, \mathbf{p}_2 = current mouse pos. \rightarrow intuitive, but rotation exactly about z-axis impossible

- Improvements / variants:
 - "Spinning trackball": "re-grabbing" the sphere is less often necessary
 - "Snapping": allows precise rotation around world/object coord. axes
 - In case \mathbf{p}_2 leaves the ellipse \rightarrow could use different 3D surface that can be attached continuously to sphere (e.g., hyperboloid)

- Rotation axis **r** is given in the camera coordinate frame!
 - You need it in the world frame or object frame
 - Depending on whether the rotation is to be applied to the object before or after all other transformations
- Warning: with variant 2 ("incremental trackball"), a lot of small rotations need to be accumulated! (one per frame) \rightarrow consider numerical robustness and drift

Cubtile

- 5 multi-touch surfaces arranged in a cube
- Cube acts as proxy for obj
- Bonus: very neat illumination ©
- Number of DOFs:

Virtual Reality and Physically-Base dSimulation

Isotonic vs Isometric Sensing

- Definition isotonic sensing device: The user can move the device (or just that DoF) all the way without changing muscle tone.
 - Isotonic = "same muscle tone (tension) during contraction"
 - In practice: input value is proportional to distance from origin, which, ideally, does not require force
- Definition isometric sensing device: The device (or just that DoF) does not move when the user pushes/pulls the device
 - This is only true for an ideal device
 - In practice: input value is proportional to force
 - Isometric = "same muscle metric (length) during contraction"

Example for Isometric Device: Spacemouse

Example for Isotonic Device: Control Action Table

Virtual Reality and Physically-Base dSimulation

Rotations: controlled by an isotonic sensing mode (cyclic)

Translations: controlled by an isometric sensing mode (infinite)

Tracking the User

- Task: determine "where is X of the users?"
 - X = head, hand, eyes, feet, whole body, ...
- Requirements:
 - Non-intrusive
 - High precision (1 mm)
 - Low latency (1 msec)
 - High *update rate* (100 Hz)
 - Works in all environments and conditions
 - Large working volume
- Doesn't exist (yet?)!

- Technologies for tracking:
 - Mechanical
 - Electro-magnetic
 - Acustic (ultra sound)
 - Optical
 - Computer vision-based
 - Inertia sensors
 - Laser
 - GPS
 - Hybrids

Mechanical

- Advantages:
 - Precision
 - Low Latency
 - No distortion by metal in environment
- Disadvantages:
 - Uncomfortable
 - Working volume
 - "Dead" zones
 - Intrusion
 - Calibration
 - Inertia b/c of mass

Optical Tracking

- Idea: track highly reflective markers using IR cameras
- 1 marker \rightarrow 3D position
 - By way of triangulation
- \geq 3 markers (a "rigid body") \rightarrow position and orientation

- Standard technology for body tracking in animation studios and for game development
 - Motion capturing (MoCap)

Some Use Cases

- Advantages:
 - Free movement for users / actors
 - Large working volume
 - High sampling rate (typically 120-250 Hz)
 - Facial animation is possible, too
- Disadvantages:
 - *Line-of-sight* needed (mitigation: lots of cameras)
 - Price (\$6,000 \$100,000)

Fluid Images

NaturalPoint (OptiTrack)

G. Zachmann

"Inside Out" Tracking

- Approach:
 - Camera(s) integrated in HMD look "out" into physical environment
 - Perform SLAM (Simultaneous Localization and Mapping)
 - Needs "reset" (registration) with "zero" position/orientation at beginning
- Advantages:
 - No additional hardware (e.g. "lighthouses")
 - Potentially unlimited working space
- Examples: HoloLens, Oculus Quest, HP Reverb G2

Real world geometry is reconstructed automatically...

Eye Tracking

- Differentiation:
 - Where are the user's eyes? \rightarrow eye tracking
 - In which direction does the user look? \rightarrow eye gaze tracking
- Applications:
 - Head tracking
 - Controlling LODs, foveated rendering
 - Autostereo monitors
- Problems:
 - Precision
 - Sometimes additional hardware is needed

Acoustic Tracking

- Similar to sonar:
 - 1 ultra sound source
 - 3 receivers (for 3 DOFs)
 - Travel time \rightarrow position
- Advantages:
 - Very inexpensive
- Disadvantages:
 - Echos
 - *Line-of-sight* prerequisite
 - 3 transmitters needed for 6 DOFs
 - Small range

Inertia Sensors

- Measures acceleration in one direction
- Advantages:
 - No transmitter necessary
 - Very small sensors
- Disavantages:
 - Drift
- Sometimes combined with other tracking technologies to compensate for drift (e.g., GPS)

Laser Tracker

- Measures just distance / position
- So far being used only in manufacturing industries (CNC machines)

Bremen

Electromagnetic Tracking

- Transmitter =
 - 3 orthogonal coils (using 3 different frequencies)
 - Emit 3 orthogonal electromagnetic fields
- Sensor = receiver =
 - 3 orthogonal coils, too
 - Receive 9 signals in total
- Phase shifts between transmitted and receive signal \rightarrow distance
- Strength of the 9 different signals \rightarrow orientation
- Advantages:
 - Small sensors; Working volume = 3 m (or more)
- Disadvantages:
 - Tethering (cables)
 - Metal in environment has severe impact in field distortions
 - Noise

Characteristics of Tracking Systems in Gerenal

- 1. # DOFs
- 2. Precision, drift, replicability
- 3. Update rate, latency
- 4. Noise
- 5. Additional buttons
- **6.** Ease-of-use, tethering (=cables) unintrusiveness!
- 7. Working volume
- 8. Price

Bremen

3D Pointers / Stylus / "Controllers"

- Analogue to 2D mouse
- Hardware = tracker with buttons
 - Sometimes with additional joystick, etc.
- Names: flying mouse, flying joystick, wand (= Stab), bone, fly-stick, etc...
- Advantage: physical object induces a strong feeling of presence while grasping a virtual object

Input Devices and Tracking

Zhai and Milgram's Directness Continuum for Input Devices

Isomorphic input

		Posit cont	Velocity control	
	Absol	ute ("	Clutching Nachfassen")	
	1:1	scaled		
2-DOF example	Touch screen	Drawing tablet	Mouse	Joystick
6-DOF example	Tracking the user	Finger- ball	Cyber- glove	Spacemouse

"Magic tools" Higher order control (e.g., accel.)

?

?

The Dataglove

- "Tracks" fingers of human hand = measures angles of joints
- One of the very early VR devices
- Different numbers of sensors:
 - 12 = 4 (thumb) + 4x2 (2 sensors per finger)
 - 22 = 4 (thumb) + 4x3 (3 sensors per finger) + 3 sensors between fingers + 1 sensor on back of hand (Handrücken)
- Sensor technologies:
 - Glass fibers (not very robust)
 - Bimetallic strips
- Disadvantages:
 - Low precision
 - Glove by and itself (not really accepted)

Variants

- Pinch glove:
 - No tracking, just detects contact between finger tips \rightarrow each finger acts like a button
- Usefuly only using 2 tracked pinch gloves; with, though, pretty clever navigation and manipulations can be performed:
 - Grasping and moving
 - Scaling (using *handles* à la Inventor)
 - Will be presented later ...
- Disadvantage: a virtual hand cannot be rendered

Other High-Dimensional Input Devices

- Cubic Mouse:
 - Number of DOFs = 9

3D Range Sensors

- First consumer device: Microsoft Kinect
- Deliver depth image (range image)
- Lead to so-called natural user interaction (NUI)
 - This vision existed from the beginning of VR

Bremen

Ŵ

Virtual Reality and Physically-Base dSimulation

Brekel Pro Body 2 v2.03 (64 bit) - 🗆 × Sensor (Auto Align) Lamera 😹 Frustru - * Network (TCP: 888 Auto Filenamo 🕱 Tracking FPS: 30.44 Drawing FPS: 37.93

A Possible Application: Control of Micro-Surgery Robots

Collaboration with DLR, Institute for Mechatronics, Oberpfaffenhofen

Locomotion Devices

Sarcos, Utah

Omni-Directional Treadmill

Virtual Reality and Physically-Base dSimulation

Cyberwalk omnidirectional treadmill, 2005-2008, TU München

How it Works

Virtuix: Omnidirectional treadmill for the home [2013]

Cyberith Virtualizer

Other Locomotion Devices

Virtual Reality and Physically-Base dSimulation

CyberCarpet Martin Schwaiger, Dr. Thomas Thümmel, TU München

How it Works

VirtuSphere

www.virtusphere.com

Virtual Reality and Physically-Base dSimulation

CirculaFloor, 2006

Potential Applications

- Research on behavior & cognition, brain research
- Sports medicine
- Training of soldiers and security staff
- Fun parks (?)
- Architecture:
 - Visualization and realistic exploration of architectural designs
 - Test of escape routes
- Tests on humanoid robots

Bremen Ŵ

Simulation of Ground for Real Walking

* A part of the upper belt is omitted in the figure for your understanding

Bremen Ŵ **Other Locomotion Devices**

Bremen Ű **Unconventional Input Devices**

Virtual Reality and Physically-Base dSimulation

The Shape tape

Are You Aware of Any Other Cool VR Input Device?

https://www.menti.com/zkg58wx3dc

Brain Computer Interfaces

- Idea: control the machine by your brain only (no intermediary devices)
 - So far: EEG
 - SciFi: implant

Bremen Ŵ

Another Type of Classification of Input Devices

the P capable Proprioception Useable in lap Consistent Haptics side

Hand				
World-Grounded Devices	\checkmark	\checkmark		\checkmark
Non-Tracked Hand-Held Controllers		\checkmark	\checkmark	\checkmark
Bare Hands	\checkmark			
Tracked Hand-Held Controllers	\checkmark	\checkmark	\checkmark	\checkmark
Hand Worn	\checkmark	\checkmark	\checkmark	\checkmark
Non Hand				
Head Tracking	\checkmark	\checkmark		
Eye Tracking				
Microphone			\checkmark	
Full-Body Tracking	\checkmark	\checkmark	\checkmark	\checkmark
Treadmills	\checkmark	\checkmark		

Logical Devices

- Problem:
 - Relative / absolute devices (e.g., spacemouse vs. optical tracker)
 - Different dimensionality
 - Different interfaces / APIs to devices
- Solution:
 - Abstract from physical devices \rightarrow logical devices
 - Classify according to dimensinality of device input
 - Make all logical devices *absolute* devices (integrate relative ones)
- Logical devices [inspired by Wallace 1976]:
 - OD = "Button" (boolean)
 - 1D = "Value" (float)

• Mapping matrix:

	Mouse	Space- mouse	Tracker	Speech	Glove	Dials
Button (0D)	x	Х	(x)	Х	Х	
Value (1D)	(x)	(x)	(x)	(x)	х	х
Space (6D)	(x)	Х	x			
Choice (discr.)	x	Х			Х	

Bremen

Software-Side Considerations

- Requirements on architecture:
 - Device could be at arbitrary host \rightarrow client-server architecture
 - Lots of clients per server
 - Fault tolerant, in case of wrong parameters (e.g., wrong port), device switched off at init time, etc.
 - Ideal: substitute other physical device for logical device by config file (e.g., for driving the navigation)
- 2 kinds of quality of service (QoS): fast or reliable

Kind of data	Treatment of latency	Kind of transport	Data structure
continuously	"better never than late"	UDP	Shared memory
discrete	"better late than never"	TCP	Queue

٦	١	
-	•	